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We study a simplified model of the RNA molecule proposed by Vernizzi et al. in the regime of strong
concentration of positive ions in solution. The model considers a flexible chain of equal bases that can pairwise
interact with any other one along the chain while preserving the property of saturation of the interactions. In the
regime considered, we observe the emergence of a critical temperature Tc separating two phases that can be
characterized by the topology of the predominant configurations: in the large temperature regime, the dominant
configurations of the molecule have very large genera �on the order of the size of the molecule�, corresponding
to a complex topology, whereas in the opposite regime of low temperatures the dominant configurations are
simple and have the topology of a sphere. We determine that this topological phase transition is of first order
and provide an analytical expression for Tc. The regime studied for this model exhibits analogies with the
dense polymer systems studied by de Gennes.
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I. INTRODUCTION

Recent advances in mathematical models of RNA and
DNA molecules have led to stimulating new studies of their
complex spatial properties and their relation with the envi-
ronmental variables �see, e.g., �1–5��. In this paper we con-
sider the exactly solved model for a RNA molecule presented
in �6�, which consists of a homopolymer of length L, with an
infinitely flexible backbone, and in which any arbitrary pair
of bases is allowed to �pairwise� interact. This combinatorial
model preserves the important property of saturation of the
interactions �2,7� of the actual RNA molecule, but it does not
include both the geometric and the energetic aspects of the
real molecules. Due to its simplicity, the model is exactly
solved, i.e., it allows for analytical expressions of statistical
and topological interesting quantities, such as the partition
function and its topological expansion �8�. A crucial ingredi-
ent of the model is the introduction of an extra degree of
freedom N, such that a random N�N Hermitian matrix is
added to each base position along the chain. A physical in-
terpretation can be given to this parameter a posteriori
�6,8,9�: 1 /N plays a role in the model that can be associated
with the concentration of positive ions �like Mg++� in solu-
tion for real molecules. These positive ions are responsible
for the overall electric charge neutralization of the system
compensating the negative charge in the phosphate groups in
the RNA molecule. The neutralization of the phosphate ions
provide the physical mechanism for the folding of the mol-
ecule �10–15�. Moreover, the algebraic power of 1 /N2 in the
topological expansion of the partition function of the model
is the genus of the diagrams associated with the different
configurations �6,8,16�. These diagrams encode the real spa-
tial structure of the molecule, in the sense that they are analo-
gous to the secondary �or planar� structure of the molecule,

from which the tertiary �or spatial� one is obtained �6�.
Therefore, the parameter N works as a regulator that controls
the topology of the molecule within the model. To the best of
our knowledge, the regime of N→0 has not received much
attention in the theoretical models considered in the litera-
ture, and in this paper we address some questions arising in
this regime. We identify this regime with the dense polymer
phase of the O�n� vector model of de Gennes �17�, which is
described by the limit n→0. Furthermore, we are not aware
of any experimental works in real RNA molecules in the
corresponding laboratory regime.

In a previous work �8�, we have provided an exact ana-
lytical expression for the partition function of the model,
which has been used to study its thermodynamic properties
in the regime N�1, i.e., that of small ion concentration in
the surrounding environment. However, some of the expres-
sions that we have obtained in that paper are analytical in N
and are, therefore, useful to explore other regimes than the
one we have chosen to discuss in that work. In this paper we
study �for a wide range of temperatures� the complementary
regime N→0, which can be characterized as the one with a
large positive ion concentration in the surrounding medium.
We observe the emergence of a critical temperature Tc sepa-
rating two regimes with different spatial configurations: in
the large temperature regime, the dominant configurations of
the molecule have very large genera �on the order of the size
of the molecule�, corresponding to a complex topology,
whereas in the opposite regime of low temperatures the
dominant configurations are simple and have the topology of
a sphere. This transition is not related a priori to the so-
called coil-globule transition in which the molecule adopts
the shape of an elongated coil for low temperatures, whereas
it assumes a compact globule shape in the large temperature
regime. This latter transition is considered to be of first order
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�3,18–21�. Some recent work in the literature has recently
addressed related issues. In �18�, a study of the distribution
of genera of pseudoknotted configurations in the
T-dependent phase transition for a self-avoiding homopoly-
mer on a lattice has been considered.

This paper is organized as follows. In Sec. II we recon-
sider the model presented in �6� and recall some exact re-
sults, such as the partition function and its topological expan-
sion �8�. Section III is devoted to the study of the regime
N→0 and the topological phase transition: we first consider
the mathematical setting and approximations that are needed
to analytically treat the phase transition. We then apply this
preliminary study to the partition function of the model to
make explicit the emergence of the phase transition and we
give an analytical expression for the critical temperature. In
Sec. IV, we discuss the thermodynamic properties of the sys-
tem in the limit N→0. We calculate the free energy per
particle, the entropy, and the latent heat. From the last ther-
modynamic quantity, we show that the phase transition is of
first order. Finally, we give our conclusions.

II. TOPOLOGICAL EXPANSION OF THE PARTITION
FUNCTION

We start by reviewing some of the properties of the model
proposed by Vernizzi et al. �6�. The model considers a chain
of bases of one type only, such that the interaction energy
between any pair of bases is a constant �. A given base can
interact with any other base in the chain, but preserving the
saturation property, which excludes interactions among three
or more bases. We consider that this property is one of the
essential ingredients of the simplified model. Therefore, all
the Boltzmann factors v=exp�−� /�T� �where T is the abso-
lute temperature and � is the Boltzmann constant� are equal
as well. At each base site, a random N�N Hermitian matrix
is added as the relevant degree of freedom. We consider this
feature to be a second essential ingredient of the model. The
configurational partition function Z of a chain of length L is

Z�L,N,T� =
1

N
�tr�1 +

1

L1/2��L� , �2.1�

=	 d� e−�N/2Lv�tr �2 1

N
tr�1 +

1

L1/2��L
	 d� e−�N/2Lv�tr �2
,

�2.2�

where � represents a collective degree of freedom �a sort of
center-of-mass random matrix�. The simple form of Eq. �2.2�
is a consequence of the symmetry of the matrix potential that
reduces the original integration over L matrices to one inte-
gration over � �6�. Applying standard results of random ma-
trices to Eq. �2.2� one obtains

Z�L,N,T� = �
k=0

�L/2�

dk�L,N�e−�k/�T, �2.3�

where the symbol �L /2� means the integer part of L /2, �k
=k�, and

dk�L,N� = �
j=0

k � L

2k
��k

j
�� N

j + 1
� �2k�!

2k−jk ! Nk+1 . �2.4�

From Eq. �2.3� we may compute Z exactly �for each L� as a
function of N and T. The spectrum of the system has �L /2�
+1 energy levels, with energies 0 ,� ,2� , . . . , �L /2��, and the
degeneracy of the kth level is dk�L ,1�.

As we have mentioned before, the power of 1 /N2 yields
the genus g of the diagram, that is, the minimum number of
handles of the surface on which the diagram can be drawn
without crossings. In �8�, we have written the partition func-
tion of the model in the form of a topological expansion
�2,6,16�, i.e., as a power series in 1 /N2, where the coeffi-
cients take into account all the Feynman diagrams with the
same topological character,

Z�L,N,T� = �
g=0

�

zg�L,T�
1

N2g . �2.5�

Here, zg�L ,�� is the number of planar diagrams that can be
drawn on a topological surface of genus g for a molecule of
size L. Note that, as a function of T, zg�L ,T� is the partition
function of the system living on the topological surface of
genus g. The coefficients zg�L ,T� are given by

zg�L,T� = �
k=0

�L/2�

�
j=k−2g

k
L ! 2 j−kSj+1

�k+1−2g�

�L − 2k� ! �k − j� ! j ! �j + 1�!
e−�k/�T,

�2.6�

where Sj
�m� is the Stirling number of the first kind �22,23�

with parameters m , j �Sj
�m�=0 if m� j or if j	0�. In the limit

T→�, zg�L ,T� coincides with the coefficients aL,g of Ref.
�6�. Using the property of the Stirling numbers mentioned in
this paragraph, we see from Eq. �2.6� that the maximum
genus of a diagram for a given L is �L /4� and, therefore, g
	 �L /4�.

III. PARTITION FUNCTION IN THE LIMIT N\0

A. Preliminary study of the analytical behavior of the partition
function

In a previous paper, we have considered the limit N→�
of the partition function �2.3� �8�, for which we gave explicit
expressions. As a consequence, we have verified the consis-
tency of interpreting the parameter 1 /N as being proportional
to the density of positive ions in the media surrounding the
molecule, as has been suggested in �6�. Therefore, the range
of the analysis considered in �8� applies to media with small
concentration of positive ions. It is natural to consider as
well the opposite situation of large positive ion concentration
in the surrounding medium, which corresponds to the limit
N→0. We are going to show later on that this regime is
characterized by the existence of a critical temperature and a
phase transition.

From the mathematical point of view, studying this limit
requires a careful handling of the partition function consid-
ered as an analytical function of several variables. Here, we
discuss a mathematical scheme that allows us to obtain
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simple analytical expressions in this limit. We first consider a
general function 
 of two variables N and T �which will be
ultimately related to the free energy� which admits a decom-
position of the form


�N,T� = 
 f�T� + 
s�N,T� , �3.1�

where 
 f �f means “fast”� indicates a function whose
asymptotic grow in the variable T is in the class of the ex-
ponential function, whereas the function 
s �s means “slow”�
denotes a function that grows slower than the class of the
exponential function �e.g., polynomial and logarithmic
classes�. Depending on the value of N �which we consider
fixed at N0� there exists a small range of values of T for
which O(
 f�T�)=O(
s�N0 ,T�) for values of T nearby a criti-
cal value Tc. At this point we can anticipate the idea of de-
fining the critical parameter Tc as the value of T for which
both the slow and the fast parts of the function 
 become
equal. We shall further develop on this idea below. The pa-
rameter Tc emerges naturally in the case when the function 

is the free energy where it plays the role of a critical tem-
perature. Given the asymptotic behavior of 
 f, as soon as T
crosses Tc, the order of 
 f varies rapidly—increasing or
decreasing—depending on the sense in which T crosses Tc,
so that �for example�


�N0,T � Tc� � 
 f�T� , �3.2�


�N0,T � Tc� � 
s�N0,T� . �3.3�

Therefore, 
�N0 ,T� has a different analytical behavior ac-
cording to the region in which T is located with respect to Tc.
The change in 
 between these two regions becomes more
pronounced when 
 f varies more rapidly. In Fig. 1 we show
an example of this behavior for the cases 
 f =e−1/T and 
s
=NT5 �in this example T and N are two dimensionless vari-
ables� in the vicinity of Tc�0.004 66 �the plot has been done
numerically�: for T�Tc, 
 is dominated by 
 f and for T
�Tc it is dominated by 
s.

If we assume that 
 f is of the form 
 f�T�
e−1/T, the
change is even more noticeable for small values of T. If we
had Tc→0, the derivative 
��N0 ,T=Tc� would not exist. We

shall correlate the absence of the derivative of 
 at the criti-
cal point with the appearance of a phase transition of the
system for Tc=0.

B. Critical temperature and the phase transition

We now consider the topological expansion in 1 /N2 �2.5�
of the partition function Z of the system. Considering that the
maximum genus of the diagrams of all possible configura-
tions is �L /4� �as we have mentioned above�, we rewrite Z as
a polynomial in the variable N2 times a N-dependent factor
which is divergent in the N→0 limit as follows:

Z�L,N,T� =
1

N2�L/4�ZR�L,N,T� , �3.4�

ZR�L,N,T� = z�L/4� + z�L/4�−1N2 + ¯ + z0N2�L/4�. �3.5�

Here, the subindex R indicates that the function is regular in
the limit N→0. The coefficients zg were given in the previ-
ous section �8� and can be written as

zg�L,T� = �
k=0

�L/2�

rk,g�L�e−k�/�T, �3.6�

where the coefficients rk,g�L� are given by

rk,g�L� =
L!

�L − 2k� ! 2k �
j=k−2g

k
2 jSj+1

�k−2g+1�

�k − j� ! j ! �j + 1�!
, �3.7�

and Si
�j� are the Stirling numbers of the first kind with param-

eters i and j. Using the property Si
�0�=�i0 �24�, we rewrite the

partition function on the topological surface of genus �L /4�
−n as

z�L/4�−n�L,T� = �
k=�L/2�−2n+�

�L/2�

rk,�L/4�−n�L�e−k�/�T, �3.8�

where �=−1 for �L /2� odd and zero otherwise. Without loss
of generality, we shall consider �L /2� even from now on.
Substituting the coefficients zg in Eq. �3.5�, we obtain the
regular part of the partition function �RZ� as

ZR�L,N,T� = e−�L/2��/�T�r�L/2�,�L/4� + �r�L/2�−2,�L/4�−1e2�/�T

+ r�L/2�−1,�L/4�−1e�/�T + r�L/2�,�L/4�−1�N2 + ¯

+ �r0,0e�L/2��/�T + r1,0e��L/2�−1��/�T + ¯

+ r�L/2�,0�N2�L/4�� . �3.9�

Note that r0,0=1 since it counts the number of configurations
with lowest energy and genus, that is, the unique configura-
tion without interaction among bases. In order to treat Eq.
�3.9� analytically in what follows, we shall consider two ap-
proximations on it, valid in the limit N
1. We have studied
the analytical behavior of Eq. �3.9� using the program MATH-

EMATICA �25�, within the range N�10−20 in the concrete
examples considered. For these examples, the range of sizes
of the system is L
102–104 and that for the temperature is
T
10−4–10−2.

First, we observe that, for the ranges of L and T consid-
ered, the terms proportional to N2g are dominated by expo-

� f

�s

� Tc0.0040 0.0045 0.0050
T

2.�10�92

3.�10�92

4.�10�92

�

FIG. 1. �Color online� Plot of 
�N ,T�=e−1/T+NT5 around Tc

�0.004 66 with N=10−80. The plot has been done numerically.
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nential factors �e.g., rk,g /rk−1,g�107 and e�/�T�1043

��=�=1��. For large values of T the most important term in
sum �3.9� is the first one �up to order zero in N�, whereas for
small values of T the dominant term in the sum is the one
proportional to N2�L/4� �=N�L/2�, for �L /2� even�. To keep ana-
lytical expressions as simple as possible, we retain only the
most important term proportional to N�L/2� in Eq. �3.9�, i.e.,
e�L/2��/�T and write

ZR�L,N,T� � r�L/2�,�L/4�e
−�L/2��/�T + N�L/2�. �3.10�

We refer to Eq. �3.10� as the thermal approximation �TA� for
the partition function since the relevance of the terms in ZR
varies significantly when T crosses Tc, that is, when T satis-
fies O�r�L/2�,�L/4�e

−�L/2��/�T�=O�N�L/2�� �see Eq. �3.1��.
Next, we specify the definition of Tc with more details. It

is clear that Eq. �3.10� is a broader approximation to Eq.
�3.9� since it excludes many terms that are relatively impor-
tant when the two terms in Eq. �3.10� are of the same order,
i.e., when T is closer to Tc. However, we will see later how to
minimize the difference between Eqs. �3.9� and �3.10�, show-
ing the conditions under which RZ becomes close to TA.
From the TA we calculate the regular part of free energy
from F=−�T ln Z as follows:

FR�L,N,T� � − �T ln�r�L/2�,�L/4�e
−�L/2��/�T + N�L/2�� .

�3.11�

In Fig. 2 we show a plot of the thermal approximation for the
free energy TA against the temperature. Two regimes can be
clearly differentiated, separated by T=Tc: for T�Tc, the sec-
ond term in the logarithm function of Eq. �3.11� is much
larger than the first one, and can be therefore neglected, with
the opposite behavior for T�Tc. These plots show two inter-
esting characteristics: Eq. �3.10� behaves linearly below and
above Tc and the slope for T�Tc is higher than that for the
case with T�Tc. We therefore identify a phase transition
occurring for T=Tc, which we identify as the critical tem-
perature. As it is customary for a finite system such as the
model for the RNA molecule studied here, the term “phase
transition” should be interpreted as a “strongly cooperative
phenomenon” �21�.

In a real RNA molecule, the large negative electric charge
of the phosphate ions prevents it to fold onto a compact

structure. The concentration of positive ions in solution, such
as Mg++, neutralizes the phosphate ions making possible the
folding of the RNA molecule �10,13,26�. In the context of
the model studied in this paper, if we interpret 1 /N as the
concentration of Mg++ in solution �2,8,9�, we see from Eq.
�3.11� that increasing this concentration favors the formation
of RNA structures with large genus, and vice versa.

The asymptotic straight lines in Fig. 2 are obtained by
retaining only the leading term in the logarithm of Eq. �3.11�
when varying the temperature around Tc. Therefore, the ana-
lytical expressions for these asymptotic straight lines are
given by

FR�L,N,T � Tc� � − ��L/2�ln�N�T , �3.12�

FR�L,N,T � Tc� � − � ln�r�L/2�,�L/4��T + �L/2�� ,

�3.13�

and we obtain an analytical expression for the critical tem-
perature equating the two terms in the logarithm of Eq.
�3.11�,

Tc�L,N� =
�

� ln��r�L/2�,�L/4��1/�L/2� 1
N� �3.14�

As we have mentioned in Sec. III A and shown in Fig. 2, the
regular free energy FR undergoes a change in its analytical
behavior when the temperature reaches the critical value Tc.
Below Tc, FR is dominated by the slowly varying function
�N�L/2��, whereas above Tc the rapidly varying function
�r�L/2�,�L/4�e

−�L/2��/�T� dominates. The change in the behavior
of FR is sharp in the TA, while for RZ it is obtained for a
small range of temperatures because RZ presents additional
terms that acquire relative importance when T is close to Tc.

It can be seen numerically from Eq. �3.7� that the function
of L in Tc behaves linearly as �r�L/2�,�L/4��1/�L/2�=L /e
−4.5521. For large L �L�200�, we can write the critical
temperature as

Tc�L,N� �
�

� ln�L/eN�
. �3.15�

Note that Eq. �3.15� possesses the symmetry Tc�L ,N�
=Tc�aL ,aN� for a�0 a real parameter, that is, Tc is scale
invariant. Therefore, in the large L limit, we have that
Tc�L ,N�=Tc�L /N�. Furthermore, there exists a natural cutoff
for N such that Tc�0,

N � �r�L/2�,�L/4��1/�L/2� � L/e . �3.16�

This is a consequence of Eq. �3.14� and it is consistent with
the condition stating that the slope of the asymptotic straight
line for T�Tc must be larger than that for T�Tc. However,
this cutoff is not very restrictive because we are interested in
the limit N
1 and L is at least of O�1�.

Moreover, there exist further and more restrictive condi-
tions on N, implied by both the thermodynamic and the large
size limits. Given that RZ should approach TA for large L, a
relationship between N and L should exist. When L increases
and N is fixed, the difference between the analytical expres-
sions for RZ and TA also increases. In order to obtain a

RZ

TA

T

FR

Tc

0.0034 0.0035 0.0036 0.0037 0.0038 0.0039

46.5

47.0

47.5

48.0

48.5

49.0

FIG. 2. �Color online� Typical behavior of FR calculated from
RZ and TA as a function of T for L=100 and N=10−120.
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convergence between the two in the thermodynamic limit,
we make N a L-dependent variable as follows: for each L,
there exists an upper limit for N below which the phase
transition exists. This can be seen by demanding that the
scenario discussed in the previous section actually occurs.
For real molecules, this would mean that there should exist a
minimal �L-dependent� concentration of Mg++ for which the
phase transition exists. As a consequence of this restriction,
in the thermodynamic limit L→� then N→0, implying Tc
→0. In this limit, the derivative of FR at T=Tc �see Eq.
�3.11�� does not exist and there is a bona fide phase transi-
tion.

Furthermore, the limit N→0 in the model we have con-
sidered can be associated with the dense polymer phase of
the n vector model which arises for n→0 as has been dis-
cussed by de Gennes �17�. The correspondence is established
between the degrees of freedom of the O�n� vector model,
which are n-component spin vectors, and the degrees of free-
dom of the RNA model of �6�, given by N�N Hermitian
matrices. The limit n→0 in the de Gennes O�n� model cor-
responds to a high density polymer phase, which is naturally
associated with the high concentration of Mg++ �or other
positive ions such as K+� in the solution phase of the RNA
model.

From the previous discussion of the RNA model, the
T-dependent phase transition involves a topology change in
the spatial configurations of the molecule, which goes from
one with genus zero for T�Tc to another one with large
genus �L /4� for T�Tc. The difference in the topology of the
configurations of the molecule when T crosses Tc justifies the
use of the term “topological” for describing the nature of the
phase transition. Note that this transition does not correspond
to the coil-globule transition in polymers studied in �18�, in
which the genus of the configurations decreases with increas-
ing temperature �see Fig. 3�. This is due to the fact that both
transitions take place in different regimes: whereas in �18�
the RNA molecule is surrounded by a dilute solution of
Mg++, for the case we have discussed the molecule is imbed-
ded in a medium with large concentration of positive ions.

IV. THERMODYNAMIC PROPERTIES IN THE N\0
LIMIT

From the analytical results for the partition function ob-
tained in the previous section, we now calculate some ther-
modynamic quantities that we will use to better describe the
configurations of the RNA molecule above and below Tc and

characterize the nature of the transition that it undergoes. It is
important to remark here that the condition N
1 �inter-
preted as meaning a large concentration of Mg++� is valid for
all the results presented in this section, since this is a neces-
sary condition for using the approximate expression for the
partition function instead of the exact one �3.9�. In this
analysis, we only consider the regular part of the partition
function, disregarding the N-dependent divergent factor in
Eq. �3.5�. This factor can be absorbed by convenient renor-
malizations and cancels out in any observable quantity which
involves an statistical average over the ensemble of random
configurations of the system. Therefore, all thermodynamic
quantities studied will be, therefore, termed as “regular.”

A. Free energy per base

From Eq. �3.10�, we determine the free energy per base,
f =F /L. Using that �L /2� /L→1 /2 in the large L limit, we
write the regular free energy per base as

fR�L,N,T � Tc� � −
�

2
ln�N�T , �4.1�

fR�L,N,T � Tc� � −
�

2
ln�L/e�T +

�

2
. �4.2�

On one hand, from Eq. �3.12� we notice that fR is indepen-
dent of L for T�Tc. This means that fR is determined by the
local �short distances� environment of a point in the chain
and not by global �large distances� properties. This behavior
is reasonable because thermal agitation is small, which pre-
vents coupling on a given base with another non-neighboring
one in the chain. On the other hand, for T�Tc we see from
Eq. �3.13� that fR is in turn independent of N. This can be
interpreted by noting that, for temperatures above Tc, thermal
agitation overcomes the folding action of the positive ion
concentration in the medium, rendering the local behavior
independent of this concentration and, therefore, of N.

B. Entropy

Next, we calculate the regular entropy SR=−�FR /�T from
RZ and TA, and plot it in Fig. 4, which shows that the de-
pendence of the entropy with the temperature resembles a
step function, with a positive step in T=Tc �in particular, for
the TA case�. This behavior could be expected since SR�Ta�
	SR�Tb� for Ta�Tb and it is a consequence of the linear
asymptotic behavior of the regular free energy displayed in
Fig. 2. On the contrary, a negative step in T=Tc would have
implied Tc�0. The curves of SR from the TA, for T below
and above Tc, are derived from Eqs. �3.12� and �3.13�. More-
over, it can be seen from Fig. 4 that, as N decreases, RZ
approaches TA and the behavior of RZ resembles more
closely that of a step function,

SR�L,N,T � Tc� � ��L/2�ln�N� , �4.3�

SR�L,N,T � Tc� � � ln�r�L/2�,�L/4�� � ��L/2�ln�L/e� .

�4.4�

We have verified numerically that, in the limit N→0, the plot
of SR from RZ behaves asymptotically as a step function

high �Mg���

Coil state Globule state

low �Mg���

FIG. 3. Phase transition between coil and globule states when T
crosses Tc. The arrows indicate the direction in which T increases,
to the right �left� for high �low� concentration of Mg++. This is not
to be confused with the topological phase transition, as explained in
the text.
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with step in Tc of magnitude proportional to the latent heat.

C. Latent heat

From the expressions for the entropy, we calculate the
regular latent heat of the transition as follows:

lR�L,N,T = Tc� = Tc�SR�Tc� = Tc�SR�T � Tc� − SR�T � Tc��

= �L/2�� . �4.5�

Equation �4.5� shows that the phase transition in the model
we have considered is of first order �27�. Note that Eq. �4.5�
does not depend on N: this result could be expected, since
the latent heat is the energy released or absorbed by the
system during the transition, and N is associated with the
concentration of Mg++ and, therefore, plays the effective role
of an external variable regardless of the way in which it has
been introduced. Equation �4.5� expresses that the energy
exchange between the system and the bath during the phase
transition is �L /2�� since there are �L /2� pairings between
pairs of bases, which could be created or broken during the
transition, depending on the direction in which T crosses Tc.

V. CONCLUSIONS

In this paper we have studied, using both analytical and
numerical methods, the T-dependent phase transition in a

simplified model of the RNA molecule, in the regime of
large concentration of positive ions in solution. This regime
has similarities with the large density phase of polymers
studied by de Gennes. We have presented an analytical ex-
pression for the critical temperature Tc, which tends to zero
in the thermodynamic limit. The critical temperature sepa-
rates the only configuration without interaction between the
bases �and, therefore, of genus zero�, which is dominant for
T�Tc, from the configurations with high energy and large
genera equal to �L /4�, which dominate for T�Tc. This tran-
sition is not to be confused with the coil-globule transition,
which appears for low concentration of positive ions in so-
lution. Due to the interesting dependence of the genus with
the temperature, we call this a topological phase transition,
and we have shown that the transition is of first order. Al-
though the model studied is very simple, we are confident
that most of the properties studied here might be robust and
extend to more realistic ones, given the importance of the
saturation property of the elementary base interaction that
this model preserves.
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FIG. 4. �Color online� Typical behavior of SR vs T calculated from RZ �continuous line� and TA �dashed line�, for L=200, temperatures
close to Tc, and different values of N: �a� N=10−80, �b� N=10−100, �c� N=10−130, and �d� N=10−180. The convergence of RZ to TA when N
decreases is displayed.
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